2006SLOCT

Portland energy recovery facility

Flood risk assessment Addendum August 2021

technical note

Portland Energy Recovery Facility

Flood Risk Assessment Addendum

Project No.	0979
Revision	Initial issue
Date	29 July 2021
Client	Powerfuel Portland Limited
Prepared	C Yalden
Checked	C Yalden
Authorised	I Awcock
File Ref.	p:\0979 portland port erf\c documents\reports\0979 - portland erf - flood risk assessment addendum.docx

1 Introduction

- 1.1 This Flood Risk Assessment (FRA) Addendum has been prepared on behalf of Powerfuel Portland Limited to accompany the August 2020 AWP FRA which was submitted in support of the detailed planning application for a merchant Energy Recovery Facility (ERF) on a brownfield site within the existing and operational Portland Port (Planning ref. WP/20/00692/DCC).
- 1.2 The addendum responds to matters raised by Dorset Council's (DC) Flood Risk Management (FRM) team through the consultation process, with a copy of their consultation email dated 11th November 2020 included within Appendix A of this addendum (DC ref. PLN20-069). The addendum also draws reference to further advice received from DC FRM through their charged advice service.
- 1.3 Each matter raised within DC FRM's consultation email has been set out below in italics, with further explanation or technical input provided to advise our response.

2 Response to matters raised

2.1 The applicant has not demonstrated in their application that the existing outfall pipes have adequate capacity for the unattenuated flows coming from the Waste Recovery Site.

Although a free discharge to the sea is allowable at this location, as it will have no discernible impact on downstream tidal flood risk, the conveyance of this free discharge needs to be sized accordingly. Where existing connections are to be used, this should consider, not only the size of the pipe but any contributions from development elsewhere. If a full, unattenuated discharge cannot be achieved due to capacity issues, then some attenuation might be needed to reduce peak flows.

Surcharge of the system needs to be avoided during normal conditions as exceedance flows directly to tidal waters could conceivably convey contaminants off site.

- 2.2 The existing outfalls which serve the application site fall under the ownership and responsibility of Portland Port Ltd (PPL). Through discussions with PPL we have received copies of historic drainage records linked to the existing site drainage, together with recently commissioned drainage surveys.
- 2.3 The surveys confirm the presence of three separate drainage outfalls, all serving the application site only. Two eastern outfalls discharge into the foreshore at Balaclava Bay, with a final northern outfall discharging into Portland Port.
- 2.4 The eastern outfalls can be seen at ground level, secured to the foreshore. Their alignment is consistent with the historic drainage plans. The outfalls are 225mm and 300mm diameter, with assumed gradients 1:6.5 and 1:12 respectively, based on the gradient of the foreshore. The northern outfall is 100mm diameter, with approximately gradient 1:50.
- 2.5 The hydraulic capacity of the outfalls can be seen summarised within Table 2.1 below.

Outfall Ref.	Gradient	Hydraulic Capacity
Eastern 300mm	1:12	323 I/s

Table 2.1 – Existing Outfall Capacities

Outfall Ref.	Gradient	Hydraulic Capacity
Eastern 225mm	1:6.5	205 I/s
Northern 100mm	1:50	8.5 l/s

- 2.6 The Surface Water Management Plan (SWMP) within the August 2020 AWP FRA proposes to discharge the clean roof catchment through the eastern outfalls to Balaclava Bay, whilst runoff from the yard and trafficked highway areas would be discharged through the northern outfall to Portland Port.
- 2.7 The Q100 peak unattenuated flow for each site catchment has been calculated using the Modified Rational Method (HR Wallingford, 1990). The flow rate has been compared against the relevant outfall(s) to determine whether there is sufficient capacity to drain unattenuated flows from the site. The output from this exercise has been seen summarised within Table 2.2 below.

Catchment Ref.	Catchment Area	Peak Flow (Q100)	Outfall Ref.	Hydraulic Capacity
Clean Roof	0.782 ha	265 l/s	Eastern Outfalls (300mm & 225mm)	528 l/s (cumulative)
Yard and Trafficked Areas	Yard and 0.681 ha 231 l/s Trafficked Areas		Northern 100mm	8.5 l/s

Table 2.2 – Unattenuated Site Discharges (Review)

- 2.8 Table 2.2 above demonstrates that the eastern outfalls have sufficient capacity to drain the clean roof area. It is recommended that any residual capacity within the eastern outfalls is proportionally distributed and therefore the preliminary drainage layout drawing which appends the FRA has been updated to show approximately 40% of the roof catchment draining to the 225mm outfall, with the remaining 60% draining to the 300mm outfall.
- 2.9 The above table also demonstrates that the northern outfall has insufficient capacity to drain the proposed yard and trafficked areas. We have prepared a series of hydraulic models to simulate the northern outfall and have run a range

of unattenuated storm events to establish the potential flooded volumes that might occur.

2.10 The results from the above models have been summarised within Table 2.3, together with an adjusted attenuation requirement, which considers the capacity of the proposed swales promoted by the SWMP.

Return Period	Flooded Volume	FRA SWMP Attenuation	Adjusted Attenuation Req.
2 year (+40% CC)	65 m ³		+0 m ³
5 year (+40% CC)	100 m ³		+35 m ³
10 year (+40% CC)	10 year 135 m ³ (+40% CC)		+70 m ³
30 year (+40% CC)	200 m ³		+135 m ³
100 year (+40% CC)	295 m³		+230 m ³

Table 2.3 – Northern Outfall Modelling

- 2.11 Table 2.3 demonstrates that the northern outfall and proposed swales are able to accommodate runoff in up to the 2 year return period with 40% allowance for climate change. Beyond this the network would become overwhelmed and up to 230 m³ of flooding would occur in the 100 year return period.
- 2.12 It is considered that a 2 year (+CC) capacity would drain the first flush from a greater return period storm, thereby reducing the risk of pollution due to overland exceedance flows. Through discussions with DC FRM it was suggested that the existing outfalls may not have to demonstrate capacity to manage flows in up to the 100 year return period (+CC), provided the network would not be regularly overwhelmed.

- 2.13 An appropriate design event for the northern outfall has not been agreed with DC FRM however the results within Table 2.3 identify the necessary attenuation provisions required mitigate on-site flooding for a range of storm events.
- 2.14 The preliminary drainage layout drawing which appended the August 2020 AWP FRA has been updated as part of this Addendum and now shows the surveyed outfall alignments, together with an offline geo-cellular attenuation tank which can provide up to 230 m³ storage volume.
- 2.15 Copies of the updated Preliminary Drainage Layout drawing and any hydraulic modelling or calculations can be found within Appendix B and Appendix C respectively.
- 2.16 Due to the lack of survey information there can be no certainty that the current condition of the existing network is suitable for discharge of surface water from the site.
- 2.17 The existing outfalls which serve the application site fall under the ownership and responsibility of PPL.
- 2.18 PPL have commissioned a series of CCTV condition surveys for each outfall. These have only been partially completed due to limited access for the eastern outfalls (survey required from submerged outfalls) and partial blockage for the northern outfall (PPL are due to undertake remedial repairs).
- 2.19 PPL have advised that the outfalls can be retained for re-use to serve the application site. PPL will retain ownership and responsibility for the systems and therefore we trust that a suitable planning condition can be agreed to secure the submission of post-repair surveys for all outfalls.
- 2.20 Copies of the currently available survey information can be found within Appendix D of this Addendum.

3 Conclusions

- 3.1 Following the consultation response received from DC FRM, we have undertaken further consultation, coordinated additional drainage surveys and completed a series of hydraulic models.
- 3.2 The additional design input has concluded that the existing eastern drainage outfalls to Balaclava Bay have sufficient capacity to receive unattenuated flows from the roof catchment only. CCTV condition survey of the eastern outfalls requires access to their submerged outfalls. Ownership and responsibility for the outfalls remains with PPL and it is recommended that further evidence can be

submitted at discharge of condition stage, following any potential remedial repairs, to demonstrate the suitability of the existing outfalls.

- 3.3 It is concluded that the existing northern drainage outfall to Portland Port has sufficient capacity (in conjunction with the proposed on-site swales) to serve the yard and trafficked areas in up to a 2 year return period only (inc. climate change). This would also drain the first-flush from greater return period storms, reducing the risk of pollution from exceedance flows.
- 3.4 A suitable design event should be agreed with DC FRM, beyond which exceedance flows from the northern outfall can be allowed to flow overland towards Balaclava Bay/Portland Port. Any extra-over attenuation requirements to accommodate flows from the design event can be provided in the form of an offline geo-cellular attenuation tank.
- 3.5 The additional studies undertaken by this Addendum have demonstrated the presence of existing surface water outfalls that currently serve the application site. The ability to utilise these outfalls and a commitment to ensure they remain operational throughout the development's lifetime has been agreed with PPL.
- 3.6 The preliminary drainage layout drawing which appends this Addendum identifies additional offline attenuation. This attenuation will manage excess flows from the northern outfall up to an agreed design event.
- 3.7 Based on the outputs from this Addendum, it is concluded that the development can be undertaken in a sustainable manner and can remain safe from flooding whilst also reducing flood risk overall.
- 3.8 It is recommended that DC FRM advise the LPA that their objection can be removed, with suitable planning conditions covering a) the submission of further survey information to demonstrate serviceable drainage outfalls, and b) the submission of a final drainage scheme with capacity to manage flows up to an agreed design event, beyond which flows are permitted to exceed the system and route overland.

AWP

Appendix A DC FRM Consultation Response

Planning

From: Sent:	FloodRiskManagement
То:	Planning; Jerry Smith
Subject:	RE: PLN20-069 - WP/20/00692/DCC - Portland Port, Castletown, Portland _ Consultation response
Follow Up Flag:	Follow up

Flag Status:

Follow up Flagged

Dorset Council, Flood Risk Management Team Dorset Highways, County Hall, Dorchester

> Lead FRM Officer: Rob Hanson Direct Dial:

> > Date: 11 November 2020

Internal LLFA Consultation – Surface Water (SW) Management

- Our Ref: PLN20-069
- **Proposal:** Construction of an energy recovery facility with ancillary buildings and works including administrative facilities, gatehouse and weighbridge, parking and circulation areas, cable routes to ship berths and existing off-site electrical sub-station, with site access through Portland Port from Castletown.
- Your Ref: WP/20/00692/DCC
- Location: Portland Port, Castletown, Portland DT5 1PP

Grid Ref: 368998, 74438

We write in response to the above consultation, sent to us as relevant Lead Local Flood Authority (LLFA), and statutory consultee for Surface Water (SW) management in respect of major development (as defined within Article 2(1) of the Town & Country Planning, Development Management Procedure, England Order 2015) and legislated for under The Town and Country Planning (Development Management Procedure) (England) Order 2015, schedule 4, paragraph (ze). Given that the proposal under consideration relates to a Waste / Minerals Site, we acknowledge that it qualifies as major development.

The brownfield site of the proposal is shown to fall largely within Flood Zone 1 (low risk of fluvial / tidal flooding), as indicated by the Environment Agency's (EA) indicative flood maps. Whilst according to the EA's Risk of Flooding from SW (RoFfSW) mapping there is no theoretical risk of pluvial flooding to the site up to the 1-in-100 year rainfall event with only some isolated ponding shown to develop during the 1-in-100 year rainfall event.

Due to the proximity of coastal waters, the site is very close or directly adjacent to areas of Flood Zone 2 along both the north and east boundaries. Whilst, according to the EA's Risk of Flooding from SW (RoFfSW) mapping, the site is near to an additional small area of surface water ponding just outside the north boundary of the site during the 1-in-100 year rainfall event and above.

The risk to the site is considered low, however, regardless of prevailing risk, any development has the potential to exacerbate or create flood risk, if runoff is not appropriately considered and managed as evidenced by a substantiated SW strategy. Ordinarily therefore, and in keeping with the requirements of the National Planning Policy Framework (NPPF), all major development proposals must take due consideration of SW management and should offer a drainage strategy that does not create or exacerbate off site worsening and should mitigate flood risk to the site.

To this end, the information supplied in relation to SW management includes the following:

- Portland Energy Recovery Facility (Powerfuel Portland Limited) Flood Risk Assessment by AWP September 2020
- Coastal Flooding Assessment Report (June 2009) by RPS Consulting Engineers

The documents referenced above provide detail regarding drainage from the applicant's site. As a result, we can acknowledge the following:

- BGS data indicates that the site is underlain by a dominate bedrock of impermeable Mudstone (Kimmeridge Clay Formation) therefore infiltration methodologies are not proposed for surface water management.
- The applicant proposes to discharge surface water runoff at an unrestricted rate into the sea via two existing outfalls. The drainage strategy explains that surface water runoff from roof areas is proposed to be directed to an existing outfall at Balaclava Bay and runoff from the highway or yard areas are to be directed through a separate outfall at Portland Port.
- The applicant proposes to manage the risk of pollution of coastal waters from polluted surface water runoff from the highway and yard areas with rain gardens, a swale and an oil bypass separator.
- The applicant proposes that levels on site will be made to slope away from the built development in order to allow any water from wave overtopping to be redirected back towards the sea.

However, the following concerns need to be addressed / clarified further. At this time therefore, we recommend that a (Holding) Objection be applied to this proposal.

The applicant has not demonstrated the viability of the existing outfalls or how, legally and technically, a new outfall could be created. The following points need to be addressed:

• The applicant has not demonstrated in their application that the existing outfall pipes have adequate capacity for the unattenuated flows coming from the Waste Recovery Site.

Although a free discharge to the sea is allowable at this location, as it will have no discernible impact on downstream tidal flood risk, the conveyance of this free discharge needs to be sized accordingly. Where existing connections are to be used, this should consider, not only the size of the pipe but any contributions from development elsewhere. If a full, unattenuated discharge cannot be achieved due to capacity issues, then some attenuation might be needed to reduce peak flows.

- Also due to the lack of survey information there can be no certainty that the current condition of the existing network is suitable for discharge of surface water from the site.
- Surcharge of the system needs to be avoided during normal conditions as exceedance flows directly to tidal waters could conceivably convey contaminants off site.

For the above reasons a proper survey is needed to ascertain whether the discharge route is viable and whether attenuation on site will be needed, given the capacity and condition of the existing pipes.

If, the applicant is not willing to undertake a survey, or if a survey suggests that the existing system is compromised or not viable, then the applicant will need to demonstrate how a new outfall can be legally created and put into use. Where this will rely on third parties, in principle agreement(s) will need to be submitted in support of these proposals. For instance, a new discharge route to sea, may need regulatory approval from the Marine Management Organisation (MNO).

Further details / evidence will need to be submitted in order to address / clarify the above concerns and to show that the drainage proposals are feasible.

We are unable to ascertain, to our satisfaction, the appropriateness of any SW management in accordance with the Ministerial statement 'Sustainable Drainage System' 2014, chapter 14 of the NPPF and Planning Policy Guidance (PPG). As relevant LLFA in this matter we are unable to confirm that the applicant has met DEFRA's technical guidance or relevant local and national policies concerning drainage.

Our (Holding) Objection may be overcome via the submission of further or additional details outlining a site-specific SW management scheme. Accordingly, we ask to be re-consulted on the SW scheme if further information is supplied. Our objection will be maintained until an adequate a SW scheme has been approved in-principle. We may at that stage request suitable planning condition/s and informative/s to cover detailed design, future maintenance and potential requirement for other permissions.

INFORMATIVES

- Permissions from the EA or Marine Management Organisation (MMO) may be needed in respect of SW discharge(s) and any construction works. The applicant will need to ensure that they comply with any other legislation relevant to these proposals. We note that the EA and MMO have already been consulted.
- The applicant is advised to have early discussions with Wessex Water in relation to the possible adoption of SuDS features in order to ensure that the final designs are in line with their requirements.

Please do not hesitate to contact me should you require further clarification of our position or the scope of additional information that is required. To assist in this respect, I suggest the applicant review our generic guidance note, which can be found at: www.dorsetcouncil.gov.uk/localfloodrisk.

Yours Sincerely,

Rob Hanson, Flood Risk Engineer.

Appendix B Preliminary Drainage Layout

	Are	a Summary Se	chedule				
	Exis Pro Pro	ting Imperme posed Roof A posed Highwa	able Area rea ay & Yard Area	1.679 ha 0.782 ha 0.681 ha			
	Tota <u>Key</u>	al Proposed In <u>7:</u>	np. Area	1.463 ha			
	Exis	ting Drainage	Site Boundary				
	\rightarrow		- Wessex Water C	ombined Sewer			
	Pro	$\rightarrow \rightarrow$	Retained Surfac	e Water Drainage			
			Clean Roof Area	a			
			Highway Area				
	Pro	posed draina; — — ← ——	<u>ge:</u> Clean Roof Surfa	ace Water Sewer			
			Highway and Ya	ard Surface Water Sewer			
			Drainage Chann Shallow Swale V	nel Vith Permeable Sub-Base			
			Oil Interceptor				
			separate trade	comprise multiple runs to and domestic waste)			
		•	Foul Pumping St	ation			
		•	Foul Gravity Bra	ke Chamber			
		\Rightarrow	Exceedance Flo	W			
			Gabion Retainir	ng Wall			
Balaclava Bay							
	-						
Waste Plan, to allow the planning application to be to show that the development can be undertaken in manner from a flood state assure at							
uilt development within the ERF area is limited to 'Flood							
vater, infrastructure, artificial sources or wave action.	D	29.07.2021	UPDATED POIN	T OF DISCHARGE AND	TMR	AJH	СРҮ
e areas are being used to facilitate utility and highway and will not be impacted by or have an impact on k.	C B	27.08.2020	BACKGROUND	LAYOUT AMENDED	TMR	AJH AJH	CPY CPY
evelopment is safe throughout its lifetime, the surface	A	10.07.2020	INITIAL ISSUE		TMR	AJH	СРҮ
o safeguards against the upper end allowances for (40%), providing betterment over undeveloped	REV DRAWI	DATE		DESCRIPTION	BY	CHK	APD
re the rate and volume of runoff would continue to climate change.	- 197 LYV		PLANNIN	IG APPLICATION			
rom previous site uses and the potential for raised lated to tidal ranges precludes the use of soakaway 2.	CLIENT	:	• *				
unoff will be captured and discharged directly to sea re-use existing points of outfall			POW	/ERFUEL LIMITED			
levelopment reduces the sites existing impermeable I therefore provides betterment in terms of peak rates	PROJE	CT:	D)RTI AND FRF			
discharge.			ſ	TATE TALE FIG.			
drain through a new SuDS swale and bypass separator ging to Portland Port.	TITLE:		PRELIMINA	RY DRAINAGE LAYOUT	ſ		
ance events runoff will be directed towards areas of yard areas where flows can be temporarily stored	PROJE	CT No:		DRAWING No:		REV:	
n peak runoff from the site and the inclusion of SuDS age systems, will ensure provide betterment over		0979		PDL-101		D)
ditions and will therefore have no adverse negative nmitted development sites that are being assessed as	SCALE	@ A1:	0	1:500 25			
evels, foul flows generated by the development will be existing WW combined network to the west of the site.	DESIG	NBY:			netres		
inage networks or features will be designed in th Building Regulations Part H. The operation and	5_0101						
f all private drainage will be the responsibility of a third nent company.				awcockw	/arc	1	
drainage networks will be designed in accordance with ption and will be handed to to the respective Water loption.				partners	hip)	
Drainage Layout does not attempt to present a final oposed drainage systems. Detailed design of the							
y inherent features will commence upon approval of the	Ar	wcock Ward Pa	artnership, Kensingt	on Court, Woodwater Park, Pynes	s Hill, Exet	er, EX2 :	5TY

Tel: 01392 409007 Web: www.awpexeter.com

Appendix C MicroDrainage & Calcs

Colebrook-White Pipe Capacity Analysis

Project No.	0979	
Project Title	Portland Port ERF	
Client	Powerfuel Portland Limited	awcockward
Sheet Ref	P:\0979 Portland Port ERF\D Design and Analysis\SPREADSHEETS\01 Drainage\03 Sewer Design\[Colebrook White Equation (pipe velocity & capacity) - North.xlsx]Colebrook-White (NORTH)	

Calcs by	TMR
Checked by	CPY
Approved by	IDA
Date	29.07.2021
Revision	INITIAL ISSUE

Fluid type:

Surface

Pipe capacity calculation based on the Colebrook White Equation (HR Wallingford, 1990);

$$V = -2\sqrt{(2gDS)}\log_{10}\left(\frac{k_s}{3.7D} + \frac{2.51\nu}{D\sqrt{(2gDS)}}\right)$$

Where:

D	Pipe diameter		225	mm
S	Hydraulic gradient 1 ir	۱	6.5	m/m
k _s	Effective pipe roughness		0.6	mm
g	Gravitiational acceleration		9.81	m/s ²
ν	kinematic viscosity		1.01E-06	m²/s
Α	Cross-sectional flow area		0.040	m ²
Q	Discharge		205	l/s
V	Velocity		5.17	m/s

Colebrook-White Pipe Capacity Analysis

Project No.	0979	
Project Title	Portland Port ERF	
Client	Powerfuel Portland Limited	awcockward
Sheet Ref	P:\0979 Portland Port ERF\D Design and Analysis\\$PREAD\$HEET\$\01 Drainage\03 Sewer Design\[Colebrook White Equation (pipe velocity & capacity).xlsx]Colebrook-White (SOUTH)	

Calcs by	TMR
Checked by	CPY
Approved by	IDA
Date	29.07.2021
Revision	INITIAL ISSUE

Fluid type:

Surface

Pipe capacity calculation based on the Colebrook White Equation (HR Wallingford, 1990);

$$V = -2\sqrt{(2gDS)}\log_{10}\left(\frac{k_s}{3.7D} + \frac{2.51\nu}{D\sqrt{(2gDS)}}\right)$$

Where:

		_		
D	Pipe diameter		300	mm
S	Hydraulic gradient 1	in	12	m/m
k _s	Effective pipe roughness		0.6	mm
g	Gravitiational acceleration		9.81	m/s ²
ν	kinematic viscosity		1.01E-06	m²/s
Α	Cross-sectional flow area		0.071	m ²
Q	Discharge		323	l/s
V	Velocity		4.56	m/s

Awcock Ward Partnership Consulting Ltd					
Kensington Court	979-Portland Port REF				
Woodwater Park Pynes Hill	Portland habour discharge	- Contract			
Exeter EX2 5TY	All Return Periods	Micro			
Date 29/07/2021 17:50	Designed by Tom	Drainago			
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage			
XP Solutions	Network 2018.1				

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and WalesReturn Period (years)2PIMP (%)100M5-60 (mm)18.800Add Flow / Climate Change (%)0Ratio R0.345Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)1.500Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Time Area Diagram for Storm

Time
(mins)Area
(ha)Time
(mins)Area
(mins)0-40.5154-80.199Total Area
Contributing(ha) = 0.7140.581

Network Design Table for Storm

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.000	10.000	0.200	50.0	0.238	5.00		0.0	0.600	0	100	Pipe/Conduit	_
1.001	20.491	0.410	50.0	0.238	0.00		0.0	0.600	0	100	Pipe/Conduit	Ā
1.002	43.521	0.870	50.0	0.238	0.00		0.0	0.600	0	100	Pipe/Conduit	ē

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(l/s)	(l/s)
1.000	50.00	5.15	98.500	0.238	0.0	0.0	0.0	1.09	8.6«	32.2
1.001	50.00	5.47	98.175	0.476	0.0	0.0	0.0	1.09	8.6«	64.5
1.002	50.00	6.13	97.565	0.714	0.0	0.0	0.0	1.09	8.6«	96.7

Awcock Ward Partnership Consulting Ltd										
Kensington Court	979-Portland Port REF									
Woodwater Park Pynes Hill	Portland habour discharge	- Contractor								
Exeter EX2 5TY	All Return Periods	Micro								
Date 29/07/2021 17:50	Designed by Tom	Desinado								
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamaye								
XP Solutions	Network 2018.1									

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
MH 01	100.000	1.500	Open Manhole	1200	1.000	98.500	100				
MH02	100.000	1.825	Open Manhole	1200	1.001	98.175	100	1.000	98.300	100	125
MH03	100.000	2.435	Open Manhole	1200	1.002	97.565	100	1.001	97.765	100	200
	100.000	3.305	Open Manhole	0		OUTFALL		1.002	96.695	100	

Free Flowing Outfall Details for Storm

Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		
	1.002		10	000.00		96.695		0.000	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfall Model		FSR		Prof	ile Type	Summer
Return	Period (years)		2		Cv	(Summer)	0.750
	Regior	England	and Wales		Cv	(Winter)	0.840
	M5-60 (mm)		18.800	Storm	Duratio	n (mins)	30
	Ratio F	l	0.345				

Awcock Ward Partnership Consulting Ltd					
Kensington Court	979-Portland Port REF				
Woodwater Park Pynes Hill	Portland habour discharge				
Exeter EX2 5TY	All Return Periods	Micro			
Date 29/07/2021 17:50	Designed by Tom	Drainago			
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage			
XP Solutions	Network 2018.1				

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)			2	Summer	and I	Vinter
Duration(s) (mins)	15, 30, 60, 12	0, 180, 240,	360, 480	, 600	, 720,	960 ,
	1440, 2160	, 2880, 4320	, 5760, 7	200,	8640,	10080
Return Period(s) (years)			1, 2	2, 5,	10, 30), 100
Climate Change (%)			40, 40), 40,	40, 4	40, 40

Water Surcharged Flooded Total US/CL US/MH Level Depth Volume Flow / Overflow Overflow PN Name Event (m) (l/s) (m) (m) (m³) Cap. Vol(m³) 1.420 20.491 1.50 1.740 14.959 1.58 1.000 MH 01 120 minute 1 year Winter I+40% 100.000 100.020
 1.001
 MH02
 60 minute 1 year Winter I+40%
 100.000
 100.015

 1.002
 MH03
 30 minute 1 year Winter I+40%
 100.000
 100.003
 2.338 3.218 1.92

	US/MH	Inf	Infil.		Infil.		Maximum			
PN	Name	Flow	(1/s)	Vol	(m³)	Vol	(m³)	(1/s)	Status	
1.000	MH 01					22	2.181	12.0	FLOOD	
1.001	MH02					17	.003	13.0	FLOOD	
1.002	MH03					e	5.118	16.2	FLOOD	

Awcock Ward Partnership Consulting Ltd						
Kensington Court	979-Portland Port REF					
Woodwater Park Pynes Hill	Portland habour discharge	- Andrews				
Exeter EX2 5TY	All Return Periods	Micro				
Date 29/07/2021 17:50	Designed by Tom	Dcainago				
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage				
XP Solutions	Network 2018.1					

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter
Duration(s) (mins)	15, 30, 60, 120, 180, 240,	360, 480, 600, 720, 960,
	1440, 2160, 2880, 4320,	5760, 7200, 8640, 10080
Return Period(s) (years)		1, 2, 5, 10, 30, 100
Climate Change (%)		40, 40, 40, 40, 40, 40

									Water	Surcharged	Flooded			Total
	US/MH							US/CL	Level	Depth	Volume	Flow /	Overflow	Overflow
PN	Name				Event			(m)	(m)	(m)	(m³)	Cap.	(l/s)	Vol(m³)
1.000	MH 01	120	minute	2	year	Winter	I+40%	100.000	100.032	1.432	32.039	1.52		
1.001	MH02	60	minute	2	year	Winter	I+40%	100.000	100.026	1.751	25.781	1.60		
1.002	MH03	30	minute	2	year	Winter	I+40%	100.000	100.008	2.343	8.262	1.92		

	US/MH	Inf	i1.	Inf	Eil.	Max	imum	Pipe Flow	
PN	Name	Flow	(1/s)	Vol	(m³)	Vol	(m³)	(1/s)	Status
1.000	MH 01					33	8.730	12.2	FLOOD
1.001	MH02					27	.833	13.2	FLOOD
1.002	MH03					11	.162	16.2	FLOOD

Awcock Ward Partnership Consulting Ltd					
Kensington Court	979-Portland Port REF				
Woodwater Park Pynes Hill	Portland habour discharge				
Exeter EX2 5TY	All Return Periods	Mirro			
Date 29/07/2021 17:50	Designed by Tom	Dcainago			
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage			
XP Solutions	Network 2018.1				

Simulation Criteria

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)			2	Summer	and I	Vinter
Duration(s) (mins)	15, 30, 60, 12	0, 180, 240,	360, 480	, 600	, 720,	960 ,
	1440, 2160	, 2880, 4320	, 5760, 7	200,	8640,	10080
Return Period(s) (years)			1, 2	2, 5,	10, 30), 100
Climate Change (%)			40, 40), 40,	40, 4	40, 40

									Water	Surcharged	Flooded			Total
	US/MH							US/CL	Level	Depth	Volume	Flow /	Overflow	Overflow
PN	Name			1	Event			(m)	(m)	(m)	(m³)	Cap.	(l/s)	Vol(m³)
1.000	MH 01	120	minute	5	year	Winter	I+40%	100.000	100.047	1.447	46.624	1.53		
1.001	MH02	120	minute	5	year	Winter	I+40%	100.000	100.040	1.765	39.562	1.60		
1.002	MH03	30	minute	5	year	Winter	I+40%	100.000	100.016	2.351	15.584	1.93		

	US/MH	Inf	il.	Inf	il.	Max	imum	Pipe Flow	
PN	Name	Flow	(l/s)	Vol	(m³)	Vol	(m³)	(l/s)	Status
1.000	MH 01					48	.315	12.2	FLOOD
1.001	MH02					41	.685	13.3	FLOOD
1.002	MH03					18	.484	16.2	FLOOD

Awcock Ward Partnership Consulting Ltd					
Kensington Court	979-Portland Port REF				
Woodwater Park Pynes Hill	Portland habour discharge				
Exeter EX2 5TY	All Return Periods	Mirro			
Date 29/07/2021 17:50	Designed by Tom	Dcainago			
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage			
XP Solutions	Network 2018.1				

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (1/per/day)Foul Sewage per hectare (1/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)			Summer	and Winter
Duration(s) (mins)	15, 30, 60, 120, 1	180, 240, 360, 4	480, 600,	, 720, 960,
	1440, 2160, 28	380, 4320, 5760	, 7200, 8	3640, 10080
Return Period(s) (years)		1	, 2, 5, 3	10, 30, 100
Climate Change (%)		40,	40, 40,	40, 40, 40

Water Surcharged Flooded Total US/MH US/CL Level Depth Volume Flow / Overflow Overflow PN Name Event (l/s) Vol(m³) (m) (m) (m) (m³) Cap. 1.461 60.588 1.777 52.174 2.357 1.000 MH 01 180 minute 10 year Winter I+40% 100.000 100.061 1.53 1.001 MH02 120 minute 10 year Winter I+40% 100.000 100.052 1.61 1.002 MH03 30 minute 10 year Winter I+40% 100.000 100.022 2.357 21.837 1.93

	US/MH	Inf	il.	Ini	Eil.	Max	imum	Pipe Flow	
PN	Name	Flow	(l/s)	Vol	(m³)	Vol	(m³)	(1/s)	Status
1.000	MH 01					62	2.279	12.2	FLOOD
1.001	MH02					54	.140	13.3	FLOOD
1.002	MH03					24	.736	16.2	FLOOD

Awcock Ward Partnership Consulting Ltd					
Kensington Court	979-Portland Port REF				
Woodwater Park Pynes Hill	Portland habour discharge				
Exeter EX2 5TY	All Return Periods	Mirro			
Date 29/07/2021 17:50	Designed by Tom	Desinado			
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage			
XP Solutions	Network 2018.1				

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)			Summer	and Winter
Duration(s) (mins)	15, 30, 60, 120, 1	180, 240, 360, 4	480, 600,	, 720, 960,
	1440, 2160, 28	380, 4320, 5760	, 7200, 8	3640, 10080
Return Period(s) (years)		1	, 2, 5, 3	10, 30, 100
Climate Change (%)		40,	40, 40,	40, 40, 40

Water Surcharged Flooded Total US/MH US/CL Level Depth Volume Flow / Overflow Overflow PN Name Event (l/s) Vol(m³) (m) (m) (m) (m³) Cap. 1.487 87.124 1.802 77.007 1.000 MH 01 180 minute 30 year Winter I+40% 100.000 100.087 1.53 1.001 MH02 180 minute 30 year Winter I+40% 100.000 100.077 1.61 1.002 MH03 60 minute 30 year Winter I+40% 100.000 100.035 2.370 35.234 1.93

	US/MH	Inf	il.	Inf	Eil.	Max	imum	Pipe Flow	
PN	Name	Flow	(l/s)	Vol	(m³)	Vol	(m³)	(l/s)	Status
1.000	MH 01					88	8.794	12.2	FLOOD
1.001	MH02					79	0.079	13.4	FLOOD
1.002	MH03					38	3.134	16.3	FLOOD

Awcock Ward Partnership Consulting Ltd		Page 8
Kensington Court	979-Portland Port REF	
Woodwater Park Pynes Hill	Portland habour discharge	- Andrew
Exeter EX2 5TY	All Return Periods	Micro
Date 29/07/2021 17:50	Designed by Tom	Dcainago
File 0979-SW-101-A-NORTHERN EXISTIN	Checked by	Diamage
XP Solutions	Network 2018.1	

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000
Hot Start (mins)Additional Flow - % of Total Flow 0.000
MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.700 Cv (Summer) 0.750Region England and WalesRatio R 0.345 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 0.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter
Duration(s) (mins)	15, 30, 60, 120, 180, 24	40, 360, 480, 600, 720, 960,
	1440, 2160, 2880, 43	320, 5760, 7200, 8640, 10080
Return Period(s) (years)		1, 2, 5, 10, 30, 100
Climate Change (%)		40, 40, 40, 40, 40, 40

Water Surcharged Flooded Total US/MH US/CL Level Depth Volume Flow / Overflow Overflow PN Name Event (l/s) (m) (m) (m) (m³) Cap. Vol(m³)

 1.000 MH 01 240 minute 100 year Winter I+40% 100.000 100.126
 1.526 125.909

 1.001 MH02 240 minute 100 year Winter I+40% 100.000 100.113
 1.838 112.757

 1.002 MH03 60 minute 100 year Winter I+40% 100.000 100.057
 2.392 56.522

 1.53 1.62 1.002 MH03 60 minute 100 year Winter I+40% 100.000 100.057 2.392 56.522 1.94

	US/MH	Inf	il.	Inf	il.	Max	imum	Pipe Flow	
PN	Name	Flow	(1/s)	Vol	(m³)	Vol	(m³)	(1/s)	Status
1.000	MH 01					127	.595	12.2	FLOOD
1.001	MH02					114	.875	13.4	FLOOD
1.002	MH03					59	.421	16.3	FLOOD

Appendix D CCTV Survey Information

The surface water tie in manholes have been identified in a thick red line. I have also supplied the coordinates for the chamber.

5011-002-001 Peat Bay A3 @ 1-1000

Project details		
drawing name	AV/) 001 001	
drawn by	18/05/2021	date
JANES GREEN	10/03/2021	
revision	A3@1:1000	scale
PORTLANT	A3@1:1000	scale

A1 Portrait

Project details

drawing name JG TEMP External 2019 drawn by date

revision scale

Portland Port Business Centre, Castletown, Portland DT5 1PP

The surface water tie in manholes have been identified in a thick red line. I have also supplied the coordinates for the chamber.

5011-002-003 Eastern Outfall @ 1-250

Project details		
drawing name		
5011(PEATB/	AY)-001-001	
drawn by JAMES GREEN	18/05/2021	date
revision	A3@1:250	scale
G		
PORTLANE	D HARBOUR ORITY	
PORTIANE	D HARBOUR ORITY	
PORTLANE PORTLANE Portland Pc	CHARBOUR ORITY ORITY	
PORTIANC AUTH Portland Po Centre, Ca Portland	DHARBOUR ORITY	

The surface water tie in manholes have been identified in a thick red line. I have also supplied the coordinates for the chamber.

5011-002-002 Southern Outfall @ 1-250

r loject detalls		
drawing name		
5011(PEATB	AY)-001-001	
drawn by JAMES GREEN	18/05/2021	date
revision	A3@1:250	scale
	1	
	1	
	1	
	*	
	Ť2	
PORTIANI	HARBOUR ORITY	
PORTIANI	HARBOUR	
PORTLANT AUTH Portland Po	HARBOUR ORITY	

The surface water tie in manholes have been identified in a thick red line. I have also supplied the coordinates for the chamber.

date

scale

Drainage Report

Prepared For

JAMES GREEN PORTLAND PORT PORTLAND DORSET

Site JAMES GREEN PORTLAND PORT PORTLAND DORSET

THE BLOGGS LTD Surveyor: C. Blogg TheBloggsLTD@Gmail.com

Total DRB Grades for Project

1 0 3

Portland Peat Bay - CCTV Survey Report : 04/01/21

Name :	THE BLOGGS LTD
Contact :	Christopher Blogg
Location :	49 Addison Rd
Town :	Southampton
Region :	Hampshire
Postcode :	SO31 7ER
Email :	TheBloggsLTD@Gmail.com
Contact Number :	
Surveyor :	C. Blogg
Valid Certification No :	

Client Information

Name :	JAMES GREEN
Contact :	PORTLAND PORT
Location :	PORTLAND PORT
Town :	PORTLAND
Region :	DORSET
Postcode :	
Tel :	
Mobile :	
Email :	
Fax :	

Site Information

Name :	JAMES GREEN
Contact :	PORTLAND PORT
Location :	PORTLAND PORT
Town :	PORTLAND
Region :	DORSET
Postcode :	
Tel :	
Mobile :	
Email :	
Fax :	

0

Total Defects for Project

0

Total DRB Grades for Project

Report interpretation.

Overview:

Each section of the drainage system is allocated a score indicating areas that require attention. These areas are detailed in the Overview section on the following page and also at the bottom right of the first few pages. We use colour coding as an indicator of severity. Additional information concerning rehabilitation options/recomendations is included in the Overview page, which can also be used as an, "at a glance" indication of system condition. More in depth information for each section, Including images can be found later in the report. Grade indicators are as follows:

Grade A: Drain is serviceable no recommendations required

Grade B: There is an issue that might require remedial works

Grade C: There is a defect that requires remedial works, the drain is not serviceable.

Observations:

Each section of drainage reported on (manhole to manhole for example), contains detailed information about that drain and any observations made concerning condition are detailed below the header section. The observations are colour coded and given a severity score, with more significant defects being given a higher score, using a scale from 1 to 5 as detailed below:

Severity 1 to 2: These defects may require remedial monitoring

Severity 3: These defects probably require some form of remedial works

Severity 4 to 5: Defects that will require remedial repair or replacement

General:

The information provided is relevant at the time of survey. The coding system in this report is based on the Manual of Sewer Condition Classification, 5th edition (MSCC5) domestic codes (BS EN 13508-1:2003). This is the official standard for the water industry.

The severity system is based on significant experience in general practice and the 1-5 grades represent the severity of individual defects: 5 representing a more serious defect.

Please feel free to contact us for further explanation or pricing for remedial works required.

Total Defects for Project

۵

Total DRB Grades for Project

Overview

Section: 1 From: MH1 To: U/S	Grade C	DRB Grade: C Pipe Size: 300 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water
Section: 2 From: MH3 To: D/S	Grade A	DRB Grade: A Pipe Size: 300 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water
Section: 3 From: MH1 To: MH2	Grade C	DRB Grade: C Pipe Size: 300 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water
Section: 4 From: MH2 To: OUTFALL		DRB Grade: C Pipe Size: 300 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water

7

0

Total Defects for Project

0

Total DRB Grades for Project

Site: PORTLAND PORT, PORTLAND

Section 1

CI	ient:		Location (St	treet l	Name):	City/T	own/Village	(Cust	Job Ref.	Surveyo	ors Name:	Dat	e:
JAMES	GREE	N	PORTLA	ND P	ORT	PO	RTLAND		C. Blogg 04/01/				2021	
Start Node	Ref:	I	 	MH1	Finish N	ode Ref:				U/	S Direction:	UΗ	eight/Dia:	300
Start Node	Depth:	ato:		2.50	Finish N	ode Depth:	noto			0.0	0 Use:	S S	hape:	C
Start Node	Coordina	ale.					inale.				Material.		leaneu	
Drain Type	Lining	Туре	Lining Mat.	Yea	r Const.	Weather	Flow Cont.	Len	gth		R	emarks		
A						D	N	4.6	51					
Position	Code	Desci	ription						CD	Pic	Video Ref		0m	
00.00m	MH	Start	node type,	man	hole					0_0		_//	/	
00.00m	WL	Wate	r level 0%								0:00:00	_//	/	
00.00m	JDL	Joint	displaced la	arge						0_2	0:00:20	_//		
00.59m	н	Hole	in drain/sev	ver	11-02					0_3	0:02:53			
01.86m	R	Roots	S							0_4	0:03:21			
04.61m	MHF	Finisł	h node type	, ma	inhole					0_99		\neg		
												\backslash		
												\	4.61m	,
													\	
Total De	fects f	or sec	tion									DRB G	rade for S	Section
														C
0		0		1		2	0		_					

Descrip	Descriptive Report with Remarks and Observation Images Section									
Pos	Video Ref	Code	Description	Image						
00.00m		MH	Start node type, manhole MH1	Image Provided - Ref: 0_0						
00.00m	0:00:00	WL	Water level: 0% Height/Diameter							
00.00m	0:00:20	JDL	Joint displaced large - Severity 4	Image Provided - Ref: 0_2						
00.59m	0:02:53	Н	Hole in drain/sewer from 11 o'clock to 02 o'clock - Severity 4	Image Provided - Ref: 0_3						

2

0

1

....

DRB Grade for Section

Total Defects for section

Page 7

Pos	Video Ref	Code	Description	Image
01.86m	0:03:21	R	Roots - Severity 3	Image Provided - Ref: 0_4
				1:37:52 PM 04-01-2021 1.86 00:03:21
04.61m		MHF	Finish node type, manhole	Image Provided - Ref: 0_9999
			MH2	 1.45.38 PM 04-01-2021 4.61 0:00:00

Total Defects for section

0

0

1

DRB Grade for Section

Page 8

Site: PORTLAND PORT, PORTLAND

Section 2

CI	ient:		Location (S	treet N	lame):	City/T	own/Village	(Cust	Job Ref.	Surveyo	ors Name:	Dat	e:
JAMES	GREE	N	PORTLA	ND PC	ORT	PO	RTLAND				C. I	Blogg	04/01/	2021
Start Node I	Ref:			МНЗ	Finish N	ode Ref:				D/:	S Direction:	DH	eight/Dia:	300
Start Node I	Depth:			3.20	Finish N	ode Depth:				0.0	0 Use:	S SI	nape:	С
Start Node	Coordina	ate:			Finish N	ode Coordi	inate:				Material:	VC CI	eaned	N
Drain Type	Lining	Туре	Lining Mat.	Year	r Const.	Weather	Flow Cont.	Len	ngth		R	Remarks		
A						D	N	1:	2					
Position	Code	Desc	ription						CD	Pic	Video Ref	/	0m	
00.00m	MH	Start	node type,	man	hole							_//		
00.00m	WL	Wate	r level 0%							(0:00:00			
12.00m	MHF	Finisl	n node type	, ma	nhole								12m	
Total De	fects f	or sec	tion									DRB G	rade for S	J Section
. 5141 20				•		0	•						A	
U	_	U		U		U	0						-	

Descriptive Report with Remarks and Observation Images Section 2 Pos Video Ref Code Description Image 00.00m MH Start node type, manhole MH3 00.00m 0:00:00 WL Water level: 0% Height/Diameter MHF 12.00m Finish node type, manhole D/S

Section 3

Site: PORTLAND PORT, PORTLAND

C	lient:		Location (St	reet Name):	City/T	own/Village	Cust	Job Ref.	Surveyo	ors Name:	Date:
JAMES	S GREE	N	PORTLAN	ND PORT	PO	RTLAND			C.	Blogg	04/01/2021
Start Node Start Node Start Node	Ref: Depth: Coordina	ate:	Ň	MH1Finish Node Ref:MH2Direction:DHeight/Dia:3.30Finish Node Depth:0.00Use:SShape:Finish Node Coordinate:Material:VCCleaned						ght/Dia: 300 pe: C aned Y	
Drain Type	Lining	Туре	Lining Mat.	Year Const.	Weather	Flow Cont.	Length		F	Remarks	
A					D	Ν	4.49				
Position	Code	Desc	ription				CD	Pic \	/ideo Ref	Λ	0m
00.00m	MH	Start	node type, i	manhole				2_0		-//	
00.00m	WL	Wate	r level 0%					(0:00:00	_/	
00.47m	н	Hole	in drain/sew	ver 12-01				2_2 (0:00:22	-//	
01.44m	СМ	Cracl	ks, multiple	12-12				2_3 (0:00:48	-/	
01.75m	н	Hole	in drain/sew	ver 11-02				2_4 (0:01:08		
03.81m	н	Hole	in drain/sew	ver 10-02				2_5(0:01:08	$\overline{}$	
04.49m	BJ	Broke	en pipe 06-	11 at joint				2_6 (0:02:09	/	
04.49m	MHF	Finisl	h node type,	manhole				2_99		\neg	4.49m

4

0

0

Total Defects for section

0

DRB Grade for Section

c

Descriptive Report with Remarks and Observation Images								
Pos	Video Ref	Code	Description	Image				
00.00m		MH	Start node type, manhole MH1	Image Provided - Ref: 2_0				
00.00m	0:00:00	WL	Water level: 0% Height/Diameter					
00.47m	0:00:22	Η	Hole in drain/sewer from 12 o'clock to 01 o'clock - Severity 4	Image Provided - Ref: 2_2				
01.44m	0:00:48	СМ	Cracks, multiple from 12 o'clock to 12 o'clock - Severity 2	Image Provided - Ref: 2_3				

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Total Defects for section

0

0

Pos	Video Ref	Code	Description	Image			
01.75m	0:01:08	Н	Hole in drain/sewer from 11 o'clock to 02 o'clock - Severity 4	Image Provided - Ref: 2_4			
03.81m	0:01:08	Н	Hole in drain/sewer from 10 o'clock to 02 o'clock - Severity 4	Image Provided - Ref: 2_5			
04.49m	0:02:09	BJ	Broken pipe from 06 o'clock to 11 o'clock at joint - Severity 4	Image Provided - Ref: 2_6			
04.49m		MHF	Finish node type, manhole MH2	Image Provided - Ref: 2_9999			

0

DRB Grade for Section

0 1 _____

Site: PORTLAND PORT, PORTLAND

0 0 0

Section 4

C	lient:		Location (S	treet l	Name):	City/T	own/Village	Cust Job Ref. Surveyors Name: Dat					Date	:
JAMES	S GREE	N	PORTLA	ND P	ORT	PO	RTLAND				C. E	Blogg	04/01/2	021
Start Node Start Node Start Node	Ref: Depth: Coordin	ate:		MH2 0.50	Finish N Finish N Finish N	ode Ref: ode Depth: ode Coordi	inate:			OUTFAL 0.0	L Direction: 0 Use: Material:	D Heig S Sha VC Clea	ght/Dia: pe: aned	300 C Y
Drain Type	Lining	Туре	Lining Mat.	Yea	r Const.	Weather	Flow Cont.	Lengt	h		R	emarks		
А						D	N	0.6						
Position	Code	Desc	ription					С	D	Pic	Video Ref	1	0m	
00.00m	MH	Start	node type,	man	hole					3_0		_//		
00.00m	WL	Wate	er level 0%)							0:00:00			
00.43m	В	Broke	en pipe 04-	-07						3_2	0:00:19	\neg		
00.59m	MC	Mate	rial of drain	/sew	er chan	iges				3_3	0:00:36	$\neg $		
00.60m	OCF	Finis	h node type	e, oth	er spec	ial cham	ber			3_99		-1//	To To	7
												// /		
												\mathbb{N}	1.	
												V	0.6m	
Total De	fects f	or sec	tion									DRB Gra	de for S	I ection

Descriptive Report with Remarks and Observation Images							
Pos	Video Ref	Code	Description	Image			
00.00m		MH	Start node type, manhole MH2	Image Provided - Ref: 3_0			
00.00m	0:00:00	WL	Water level: 0% Height/Diameter				
00.43m	0:00:19	В	Broken pipe from 04 o'clock to 07 o'clock - Severity 4	Image Provided - Ref: 3_2			
00.59m	0:00:36	MCCI	Material of pipe changes to Cast Iron	Image Provided - Ref: 3_3			

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Page 15

Pos	Video Ref	Code	Description	Image
00.60m		OCF	Finish node type, other special chamber OUTFALL UNABLE TO TURN CORNER. AS UNSAFE TO DRIVE CAMERA ANY FURTHER AS RIGHT ON THE OUTFALL	Image Provided - Ref: 3_9999

A guide to defects and other observations in drainage systems

More detailed information can be found in the National Standard (BS EN 13508-1:2003) and in the Manual of Sewer Condition Classification (MSCC) 5th Edition, written by the Water Research Centre (WRc).

Use								
Code	Description							
С	Combined							
F	Foul							
S	Surface Water							
Т	Trade Effulent							
W	Culverted Watercourse							
Z	Other							
C	Common Materials							
Code	Description							
VC	Vitrified Clay							
PVC	Polyvinyl Chloride							
СО	Concrete							
CI	Cast Iron							
PF	Pitch Fibre							
PE	Polyethylene							
וח	Ductile Iron							

Start Node	Description	Finish Node
MH	Manhole	MHF
IC	Inspection Chamber	ICF
GY	Gulley	GYF
RE	Rodding Eye	REF
SK	Soakaway	SKF
BN	Buchan Trap	BNF
BR	Major Connection without Ref	BRF
СР	Cacth Pit	CPF
OC	Other Special Chamber	OCF
OF	Outfall	OFF
OS	Oil Seperator	OSF
WR	Major Connection without mh	WRF
LH	Lamphole	LHF

Code	Observation	Description	Attributes	
в	Broken	Pieces pipe have visibly moved	Defined by clock references. Associated with deformity in rigid pipe	\bigcirc
CC CL CM CR	Cracks	Cracks are break lines that are not visibly open	Defined by clock reference position/s. Longitudinal and radiating cracks attract only one clock reference	
CN	Connection	Lateral pipe has been connected after original construction	Described by clock reference position and diameter	

DRB Grade for Section

C

CX(I)	Defective Connection (Intruding)	Defective by intrusion or damage due to factors including: cracks, fractures, obstruction, position etc	Described by clock reference position and diameter (+ % intrusion)	
CU	Loss of Vision	Lens of camera is obscured by debris, water etc. Operator is unable to see drain clearly	'W' can be added if loss of vision is due to wate	
D	Deformed	Pipe has lost its structure	Described by percentage loss of height or width. Recorded in 5% increments	20%
DEE	Deposits Encrustation	Eg. Attached scale deposits evident	Described by clock referenced position and percentage loss of cross- sectional area (5% increments)	10%
DEG	Deposits Grease	Attached grease deposits evident	Described by clock referenced position and percentage loss of cross- sectional area (5% increments)	20%
DER DES	Deposits Coarse/Fine	Settled deposits on the invert of the pipe.	Described by percentage loss of height or diameter. Recorded in 5% increments.	10% 20% 35%
FC FL FM FR	Fractures	Fractures are visibly open. Pieces of pipe have not moved	Defined by clock reference position/s. Longitudinal and radiating fractures attract only one clock reference	
н	Holes	Section of pipe fabric is missing	Defined by clock reference location. Normally two clock references	NA
I	Infiltration	Water is infiltrating the pipe, normally via a joint but could be via another defect	Can be described in Remarks using terms such as Seeper, Dripper and Runner	a de la de l
JDL	Joint Displaced Large	Pipe has moved at joint, perpendicular to axis of pipe	More than 1.5 times the pipe wall thickness must be visible	

4

0

0

Total Defects for section

0

0

DRB Grade for Section

JDM	Joint Displaced Medium	Pipe has moved at joint, perpendicular to axis of pipe	Between 1 and 1.5 times the pipe wall thickness must be visible	
JN	Junction	Lateral pipe was installed at construction	Described by clock reference position and diameter	2
XL	Defective Junction	Lateral pipe was installed at construction but is defective in some way	Joint can be defective due to factors including: cracks, fractures, obstruction, position etc	Ċ
LD LU LL LR	Line Deviation	LD = Line Down, LU = Line Up, LL = Line Left, LR = Line Right. Not related to CIPP lining.	Additional modifiers are added: Q = Quarter (22.5), H = Half (45), F = Full (90). In degrees.	
LC	Lining Changes	If the drain is lined, the lining material has changed	Position of lining material change	
МС	Material Change	The pipe material has changed	Position of change is noted. Type of material change can be defined	8
ОВ	Obstruction/Ob stacle	An obstruction or obstacle is affecting the flow through the pipe	Described in percentage loss of cross-sectional area	30%
OJL	Open Joint Large	Pipe has moved at joint, along the axis of pipe	More than 1.5 times the pipe wall thickness must be visible	5
OJM	Open Joint Medium	Pipe has moved at joint, along the axis of pipe	Between 1 and 1.5 times the pipe wall thickness must be visible	8
PC	Pipe Length Changes	Length of individual pipe changes	New length described at this position	8

DRB Grade for Section

C

Page 19

R	Roots	Evidence of root ingress	Roots will normally infiltrate via bad joints, cracks, fractures, breaks etc	
REM	Remark	General remark	Used for additional information	
s	Surface Damage	This might include corrosion, spalling and chemical attack	Position only. Additional information can be added in Remarks	
SA	Survey Abandoned	Used when a survey cannot continue for any reason	The reason for abandoning a survey should be noted in the remarks area	
sc	Shape Changes	Dimension of drain changes	Diameter dimension change recorded. Second dimension is recorded for no circular pipe changes	8
SR	Sealing Ring	Sealing ring intrudes into pipe at joint	Described by clock reference position	
v	Vermin	Evidence of Vermin in pipe	Can also be used for evidence within manhole etc	
WL	Water Level	Used to record changes in water level. Always shown at the beginning of every survey, if dry noted as 00.	Described by percentage of height or diameter. Recorded in 5% increments	25% 50% 75%
ХР	Collapsed	Drain is suffering from complete loss of structural integrity. Always followed by SA - Survey Abandoned	Percentage loss of cross- sectional area is recorded. Other related structural defects are not recorded	80%

